Universally Typical Sets for Ergodic Sources of Multidimensional Data

نویسندگان

  • Tyll Krüger
  • Guido Montúfar
  • Ruedi Seiler
  • Rainer Siegmund-Schultze
چکیده

We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an h0 with probability one and whose cardinality grows at most at exponential rate h0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotent Ultrafilters and Polynomial Recurrence

In the thirty or so years since H. Furstenberg reproved Szemerédi’s theorem using methods from ergodic theory, many striking discoveries have been made in the area now known as Ergodic Ramsey theory. Perhaps the most surprising of these is the discovery that recurrence results can be obtained for polynomial sets, meaning sets of values of polynomials. The following pretty theorem, a special cas...

متن کامل

Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space

Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...

متن کامل

Convergence of weighted polynomial multiple ergodic averages

In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...

متن کامل

Ergodic Averages over Sparse Random Subsequences

We prove an L subsequence ergodic theorem for sequences chosen by independent random selector variables, thereby showing the existence of sparser universally L-good sequences than had been previously established. We extend this theorem to a more general setting of ergodic group actions.

متن کامل

Operators with Singular Continuous Spectrum: I. General Operators

§0. Introduction The Baire category theorem implies that the family, F , of dense sets Gδ in a fixed metric space, X, is a candidate for generic sets since it is closed under countable intersections; and if X is perfect (has no isolated point), then A ∈ F has uncountable intersections with any open ball in X. There is a long tradition of soft arguments to prove that certain surprising sets are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Kybernetika

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2013