Universally Typical Sets for Ergodic Sources of Multidimensional Data
نویسندگان
چکیده
We lift important results about universally typical sets, typically sampled sets, and empirical entropy estimation in the theory of samplings of discrete ergodic information sources from the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use techniques of packings and coverings with multidimensional windows to construct sequences of multidimensional array sets which in the limit build the generated samples of any ergodic source of entropy rate below an h0 with probability one and whose cardinality grows at most at exponential rate h0.
منابع مشابه
Idempotent Ultrafilters and Polynomial Recurrence
In the thirty or so years since H. Furstenberg reproved Szemerédi’s theorem using methods from ergodic theory, many striking discoveries have been made in the area now known as Ergodic Ramsey theory. Perhaps the most surprising of these is the discovery that recurrence results can be obtained for polynomial sets, meaning sets of values of polynomials. The following pretty theorem, a special cas...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملConvergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملErgodic Averages over Sparse Random Subsequences
We prove an L subsequence ergodic theorem for sequences chosen by independent random selector variables, thereby showing the existence of sparser universally L-good sequences than had been previously established. We extend this theorem to a more general setting of ergodic group actions.
متن کاملOperators with Singular Continuous Spectrum: I. General Operators
§0. Introduction The Baire category theorem implies that the family, F , of dense sets Gδ in a fixed metric space, X, is a candidate for generic sets since it is closed under countable intersections; and if X is perfect (has no isolated point), then A ∈ F has uncountable intersections with any open ball in X. There is a long tradition of soft arguments to prove that certain surprising sets are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 49 شماره
صفحات -
تاریخ انتشار 2013